Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Antiviral Res ; 189: 105056, 2021 05.
Article in English | MEDLINE | ID: covidwho-1126675

ABSTRACT

Emetine is a FDA-approved drug for the treatment of amebiasis. Previously we demonstrated the antiviral efficacy of emetine against some RNA and DNA viruses. In this study, we evaluated the in vitro antiviral efficacy of emetine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and found it to be a low nanomolar (nM) inhibitor. Interestingly, emetine exhibited protective efficacy against lethal challenge with infectious bronchitis virus (IBV; a chicken coronavirus) in the embryonated chicken egg infection model. Emetine treatment led to a decrease in viral RNA and protein synthesis without affecting other steps of viral life cycle such as attachment, entry and budding. In a chromatin immunoprecipitation (CHIP) assay, emetine was shown to disrupt the binding of SARS-CoV-2 mRNA with eIF4E (eukaryotic translation initiation factor 4E, a cellular cap-binding protein required for initiation of protein translation). Further, molecular docking and molecular dynamics simulation studies suggested that emetine may bind to the cap-binding pocket of eIF4E, in a similar conformation as m7-GTP binds. Additionally, SARS-CoV-2 was shown to exploit ERK/MNK1/eIF4E signalling pathway for its effective replication in the target cells. Collectively our results suggest that further detailed evaluation of emetine as a potential treatment for COVID-19 may be warranted.


Subject(s)
Antiviral Agents , Emetine , Infectious bronchitis virus/drug effects , RNA, Viral/metabolism , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chick Embryo , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Emetine/pharmacology , Emetine/therapeutic use , Eukaryotic Initiation Factor-4E/metabolism , Protein Binding/drug effects , RNA, Messenger/metabolism , Signal Transduction , Vero Cells
2.
Virus Res ; 297: 198383, 2021 05.
Article in English | MEDLINE | ID: covidwho-1122464

ABSTRACT

Slightly acidic hypochlorous acid waters (SAHWs) with pH of 5.2-5.8 containing different concentrations of free available chlorine - 62, 119, 220, 300, and 540 ppm (SAHW-62, -119, -220, -300, and -540, respectively) - were evaluated for their virucidal activity toward a low pathogenic H7N1 avian influenza virus (AIV) and an infectious bronchitis virus (IBV) in suspension, abiotic carrier, and direct spray tests, with the presence of organic materials. In the carrier test, the dropping and wiping techniques were performed toward viruses on carriers. In the suspension test, SAHW-62 could decrease the viral titer of both AIV and IBV by more than 1000 times within 30 s. With the dropping technique, IBV on carriers showed high resistance to SAHW, while AIV on plastic carrier was inactivated to an effective level (≧3 log virus reduction) within 1 min. With the wiping technique, SAHW-62 could inactivate both AIV and IBV on wiped plastic carriers to an effective level within 30 s. However, SAHW-220 could not inactivate IBV in the wiping rayon sheet to an effective level. In the direct spray test, sprayed SAHW-300 within 10 min, and SAHW-540 within 20 min, inactivated AIV and IBV on the rayon sheets to undetectable level, respectively. Our study indicates that the usage of wipes with SAHW could remove viruses from plastic carriers, while viruses remained in the wipes. Besides, a small volume of sprayed SAHW was effective against the viruses on the rayon sheets for daily cleaning in the application area. The findings we obtained concerning IBV might basically be applicable in relation to SARS-CoV-2, given the resemblance between the two viruses.


Subject(s)
Antiviral Agents/pharmacology , Disinfectants/pharmacology , Hypochlorous Acid/pharmacology , Infectious bronchitis virus/drug effects , Influenza A Virus, H7N1 Subtype/drug effects , Animals , Chickens , Coronavirus Infections/prevention & control , Dogs , Ducks , Hepatocytes , Influenza in Birds/prevention & control , Madin Darby Canine Kidney Cells
3.
J Vet Med Sci ; 83(1): 48-52, 2021 Jan 14.
Article in English | MEDLINE | ID: covidwho-1029451

ABSTRACT

Decontamination of pathogens on surfaces of substances is very important for controlling infectious diseases. In the present experiments, we tested various disinfectants in aqueous phase as well as on plastic surface carrying a viral inoculum, through dropping and wiping decontamination techniques, comparatively, so as to evaluate virucidal efficacies of those disinfectants toward an avian coronavirus (infectious bronchitis virus: IBV). We regard this evaluation system applicable to SARS-CoV-2. The disinfectants evaluated were 0.17% food additive glade calcium hydroxide (FdCa(OH)2) solution, sodium hypochlorite at 500 or 1,000 ppm of total chlorine (NaClO-500 or NaClO-1,000, respectively), NaClO at 500 ppm of total chlorine in 0.17% FdCa(OH)2 (Mix-500) and quaternary ammonium compound (QAC) diluted 500-fold in water (QAC-500). In the suspension test, all solutions inactivated IBV inoculum that contained 5% fetal bovine serum (FBS) under detectable level within 30 sec. In the carrier test, all solutions, except NaClO-500, could inactivate IBV with 0.5% FBS on a carrier to undetectable level in the wiping-sheets and wiped-carriers. We thus conclude that suspension and carrier tests should be introduced to evaluate disinfectants for the field usage, and that this evaluation system is important and workable for resultful selection of the tested disinfectants against avian coronavirus and SARS-CoV-2 on surfaces, particularly on plastic fomite.


Subject(s)
Antiviral Agents/pharmacology , Calcium Hydroxide/pharmacology , Disinfectants/pharmacology , Infectious bronchitis virus/drug effects , SARS-CoV-2/drug effects , Sodium Hypochlorite/pharmacology , Antiviral Agents/administration & dosage , Calcium Hydroxide/administration & dosage , Dose-Response Relationship, Drug , Drug Tapering , Sodium Hypochlorite/administration & dosage
4.
Sci Rep ; 10(1): 20397, 2020 11 23.
Article in English | MEDLINE | ID: covidwho-940864

ABSTRACT

COVID-19 caused by the SARS-CoV-2 is a current global challenge and urgent discovery of potential drugs to combat this pandemic is a need of the hour. 3-chymotrypsin-like cysteine protease (3CLpro) enzyme is the vital molecular target against the SARS-CoV-2. Therefore, in the present study, 1528 anti-HIV1compounds were screened by sequence alignment between 3CLpro of SARS-CoV-2 and avian infectious bronchitis virus (avian coronavirus) followed by machine learning predictive model, drug-likeness screening and molecular docking, which resulted in 41 screened compounds. These 41 compounds were re-screened by deep learning model constructed considering the IC50 values of known inhibitors which resulted in 22 hit compounds. Further, screening was done by structural activity relationship mapping which resulted in two structural clefts. Thereafter, functional group analysis was also done, where cluster 2 showed the presence of several essential functional groups having pharmacological importance. In the final stage, Cluster 2 compounds were re-docked with four different PDB structures of 3CLpro, and their depth interaction profile was analyzed followed by molecular dynamics simulation at 100 ns. Conclusively, 2 out of 1528 compounds were screened as potential hits against 3CLpro which could be further treated as an excellent drug against SARS-CoV-2.


Subject(s)
Anti-HIV Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Cheminformatics/methods , Deep Learning , Drug Repositioning/methods , HIV-1/drug effects , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Humans , Infectious bronchitis virus/drug effects , Molecular Docking Simulation , SARS-CoV-2/enzymology
5.
Viruses ; 12(10)2020 09 29.
Article in English | MEDLINE | ID: covidwho-906373

ABSTRACT

The Gammacoronavirus infectious bronchitis virus (IBV) causes a highly contagious and economically important respiratory disease in poultry. In the laboratory, most IBV strains are restricted to replication in ex vivo organ cultures or in ovo and do not replicate in cell culture, making the study of their basic virology difficult. Entry of IBV into cells is facilitated by the large glycoprotein on the surface of the virion, the spike (S) protein, comprised of S1 and S2 subunits. Previous research showed that the S2' cleavage site is responsible for the extended tropism of the IBV Beaudette strain. This study aims to investigate whether protease treatment can extend the tropism of other IBV strains. Here we demonstrate that the addition of exogenous trypsin during IBV propagation in cell culture results in significantly increased viral titres. Using a panel of IBV strains, exhibiting varied tropisms, the effects of spike cleavage on entry and replication were assessed by serial passage cell culture in the presence of trypsin. Replication could be maintained over serial passages, indicating that the addition of exogenous protease is sufficient to overcome the barrier to infection. Mutations were identified in both S1 and S2 subunits following serial passage in cell culture. This work provides a proof of concept that exogenous proteases can remove the barrier to IBV replication in otherwise non-permissive cells, providing a platform for further study of elusive field strains and enabling sustainable vaccine production in vitro.


Subject(s)
Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Infectious bronchitis virus/drug effects , Infectious bronchitis virus/physiology , Trypsin/therapeutic use , Viral Tropism/drug effects , Animals , Cell Line , Chlorocebus aethiops , Gammacoronavirus/drug effects , Infectious bronchitis virus/metabolism , Kinetics , Serial Passage , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Viral Envelope Proteins/metabolism , Virion/drug effects , Virion/metabolism , Virus Replication/drug effects
6.
Sci Rep ; 10(1): 16631, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-834914

ABSTRACT

The aim of this study was to test in vitro the ability of a mixture of citrus extract, maltodextrin, sodium chloride, lactic acid and citric acid (AuraShield L) to inhibit the virulence of infectious bronchitis, Newcastle disease, avian influenza, porcine reproductive and respiratory syndrome (PRRS) and bovine coronavirus viruses. Secondly, in vivo, we have investigated its efficacy against infectious bronchitis using a broiler infection model. In vitro, these antimicrobials had expressed antiviral activity against all five viruses through all phases of the infection process of the host cells. In vivo, the antimicrobial mixture reduced the virus load in the tracheal and lung tissue and significantly reduced the clinical signs of infection and the mortality rate in the experimental group E2 receiving AuraShield L. All these effects were accompanied by a significant reduction in the levels of pro-inflammatory cytokines and an increase in IgA levels and short chain fatty acids (SCFAs) in both trachea and lungs. Our study demonstrated that mixtures of natural antimicrobials, such AuraShield L, can prevent in vitro viral infection of cell cultures. Secondly, in vivo, the efficiency of vaccination was improved by preventing secondary viral infections through a mechanism involving significant increases in SCFA production and increased IgA levels. As a consequence the clinical signs of secondary infections were significantly reduced resulting in recovered production performance and lower mortality rates in the experimental group E2.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Coronavirus, Bovine/drug effects , Epithelial Cells/drug effects , Infectious bronchitis virus/drug effects , Influenza A Virus, H9N2 Subtype/drug effects , Newcastle disease virus/drug effects , Porcine respiratory and reproductive syndrome virus/drug effects , Poultry Diseases/drug therapy , Animals , Cell Line , Chick Embryo , Chickens , Coronavirus Infections/virology , Disease Models, Animal , Epithelial Cells/virology , Humans , Influenza in Birds/metabolism , Influenza in Birds/virology , Influenza, Human/metabolism , Influenza, Human/virology , Newcastle Disease/metabolism , Newcastle Disease/virology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Poultry Diseases/virology , Swine
7.
Cytokine ; 127: 154961, 2020 03.
Article in English | MEDLINE | ID: covidwho-822511

ABSTRACT

Some of the respiratory viral infections in chickens pose a significant threat to the poultry industry and public health. In response to viral infections, host innate responses provide the first line of defense against viruses, which often act even before the establishment of the infection. Host cells sense the presence of viral components through germinal encoded pattern recognition receptors (PRRs). The engagement of PRRs with pathogen-associated molecular patterns leads to the induction of pro-inflammatory and interferon productions. Induced antiviral responses play a critical role in the outcome of the infections. In order to improve current strategies for control of viral infections or to advance new strategies aimed against viral infections, a deep understanding of host-virus interaction and induction of antiviral responses is required. In this review, we summarized recent progress in understanding innate antiviral responses in chickens with a focus on the avian influenza virus and infectious bronchitis virus.


Subject(s)
Antiviral Agents/pharmacology , Chickens/virology , Coronavirus Infections/drug therapy , Infectious bronchitis virus/drug effects , Influenza A virus/drug effects , Influenza in Birds/drug therapy , Respiratory Tract Infections/drug therapy , Animals , Coronavirus Infections/virology , Humans , Influenza in Birds/virology , Respiratory Tract Infections/virology
8.
Virus Res ; 284: 197989, 2020 07 15.
Article in English | MEDLINE | ID: covidwho-141651

ABSTRACT

Coronaviruses are responsible for a growing economic, social and mortality burden, as the causative agent of diseases such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), avian infectious bronchitis virus (IBV) and COVID-19. However, there is a lack of effective antiviral agents for many coronavirus strains. Naturally existing compounds provide a wealth of chemical diversity, including antiviral activity, and thus may have utility as therapeutic agents against coronaviral infections. The PubMed database was searched for papers including the keywords coronavirus, SARS or MERS, as well as traditional medicine, herbal, remedy or plants, with 55 primary research articles identified. The overwhelming majority of publications focussed on polar compounds. Compounds that show promise for the inhibition of coronavirus in humans include scutellarein, silvestrol, tryptanthrin, saikosaponin B2, quercetin, myricetin, caffeic acid, psoralidin, isobavachalcone, and lectins such as griffithsin. Other compounds such as lycorine may be suitable if a therapeutic level of antiviral activity can be achieved without exceeding toxic plasma concentrations. It was noted that the most promising small molecules identified as coronavirus inhibitors contained a conjugated fused ring structure with the majority being classified as being polyphenols.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Phytochemicals/therapeutic use , Pneumonia, Viral/drug therapy , Animals , COVID-19 , Coronavirus, Feline/drug effects , Humans , Infectious bronchitis virus/drug effects , Middle East Respiratory Syndrome Coronavirus/drug effects , Pandemics , Porcine epidemic diarrhea virus/drug effects , Severe acute respiratory syndrome-related coronavirus/drug effects , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL